net.sourceforge.openforecast
Class EvaluationCriteria

java.lang.Object
  extended by net.sourceforge.openforecast.EvaluationCriteria

public class EvaluationCriteria
extends Object

A class of constants defining the various "evaluation criteria" that can be used to compare the accuracy of two forecasting models.

Since:
0.5

Field Summary
static EvaluationCriteria AIC
          EvaluationCriteria referring to the Akaike Information Criteria measure.
static EvaluationCriteria BIAS
          EvaluationCriteria referring to Bias.
static EvaluationCriteria BLEND
          EvaluationCriteria referring to a reasonable blend of all other evaluation criteria.
static EvaluationCriteria MAD
          EvaluationCriteria referring to the Mean Absolute Deviation.
static EvaluationCriteria MAPE
          EvaluationCriteria referring to the Mean Absolute Percentage Error.
static EvaluationCriteria MSE
          EvaluationCriteria referring to the Mean Squared Error.
static EvaluationCriteria SAE
          EvaluationCriteria referring to the Sum of the Absolute Error.
 
Method Summary
 boolean equals(Object obj)
          Compares two EvaluationCriteria objects for equality.
 String toString()
          Returns a textual description of this evaluation criteria object.
 
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
 

Field Detail

AIC

public static final EvaluationCriteria AIC
EvaluationCriteria referring to the Akaike Information Criteria measure.


BIAS

public static final EvaluationCriteria BIAS
EvaluationCriteria referring to Bias.


MAD

public static final EvaluationCriteria MAD
EvaluationCriteria referring to the Mean Absolute Deviation.


MAPE

public static final EvaluationCriteria MAPE
EvaluationCriteria referring to the Mean Absolute Percentage Error.


MSE

public static final EvaluationCriteria MSE
EvaluationCriteria referring to the Mean Squared Error.


SAE

public static final EvaluationCriteria SAE
EvaluationCriteria referring to the Sum of the Absolute Error.


BLEND

public static final EvaluationCriteria BLEND
EvaluationCriteria referring to a reasonable blend of all other evaluation criteria. Rather than rely solely on one specific evaluation criteria to pick a "good" model, assess them all and select the model generally regarded as "better" by the majority of the criteria.

Method Detail

equals

public boolean equals(Object obj)
Compares two EvaluationCriteria objects for equality.

Overrides:
equals in class Object
Returns:
true if the given Object is an EvaluationCriteria equivalent to this EvaluationCriteria; otherwise returns false.

toString

public String toString()
Returns a textual description of this evaluation criteria object.

Overrides:
toString in class Object
Returns:
a string representation of the object.


OpenForecast, Copyright (c) Steven Gould, 2002-2011